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Abstract

The present work uses asymptotic techniques to ®nd analytical solutions for the velocity pro®le, the turbulent
kinetic energy, k, and the dissipation rate by unit mass, E, for transpired incompressible boundary layers. The

higher-order solutions have an explicit dependence on the transpiration rate and can be used as wall functions for
the speci®cation of boundary conditions in the fully turbulent region of the ¯ow. The second-order solutions show
that k has a (ln y ) behaviour whereas E has a (ln y )/y behaviour. All results are validated against experimental
data. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

A classical means of controlling the properties of

turbulent boundary layers is the promotion of tran-

spiration at the wall. With this arti®ce, momentum

and heat can be added to the ¯ow so that it can be

made to conform to some desired property. For

example, one may want to thicken the boundary layer,

reduce the skin-friction, inhibit the transfer of heat at

the wall, or avoid separation; all these ¯ow features

can easily be achieved by the injection or suction of

¯uid at the wall at controlled rates.

The perspectives opened by this means of controlling

the properties of boundary layers raised great interest

on the subject resulting in many experimental and

theoretical contributions. A fair expectation, therefore,

is that, by now, the subject should have been largely

understood with very few results to be accomplished.

In fact, the progress achieved in the description of

transpired turbulent ¯ows in the last forty years was

remarkable. Since the early studies on the subject by

Mickley [1], passing through the very extensive exper-

imental and theoretical works on incompressible ¯ows

by the Stanford Heat and Mass Transfer Group, and

on compressible ¯ows by the Cambridge University

Aeronautics Division Group, much has been accom-

plished. The roles of transfer of heat, adverse and

favourable pressure gradients, roughness, curvature,

tri-dimensionality, compressibility, all have been stud-

ied in connection with transpired ¯ow. As a conse-

quence, some results have become ®rmly established.

The existence of a logarithmic law of the wall for tran-

spired ¯ows is today an undisputed fact. Likewise, sev-

eral turbulence models have been developed which

provide good numerical predictions for some ¯ow ge-

ometry. The ¯ow conditions covered by the published

experimental works have a wide spectrum, yielding

data for many turbulent ¯ow parameters of interest. In
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Nomenclature

A parameter in ®rst-order solution for the k equation (=3.3)
A0 parameter in the velocity law of the wall, see Eq. (41)
B parameter in ®rst-order solution for the E equation (=1.0)

cn constant in k±E model (=0.09)
cE1 constant in k±E model (=1.44)
cE2 constant in k±E model (=1.92)

C, D parameters in second-order solution for the k equation (=81, 58.3)
CD constant in E algebraic model (=0.09), see Eq. (44)
Cf skin friction coe�cient

d velocity strain
D formal limit domain
E, F parameters in second-order solution for the E equation (=17.9, 69.6)
E1 parameter in law of the wall (=9)

F injection rate (=rwvw/r1U1)
k von Karman's constant (=0.41)
lc mixing length

m exponential coe�cient in the adverse pressure gradient term
p pressure
P production

R Reynolds number
Re2 Reynolds number based on the momentum thickness
u, v velocity components

ut friction velocity
u+ inner wall reference velocity (=u/ut)
x, y ¯ow Cartesian coordinates
y+ inner wall reference scale (=yut/n )

Greek symbols
d boundary layer thickness
dij Kronecker delta

G non-dimensional group de®ned by Eq. (43)
E dissipation rate of turbulent kinetic energy
Z stretching function
k turbulent kinetic energy

m viscosity
n kinematic viscosity
x non-dimensional group de®ned by Eq. (46)

r density
sk constant in k±E model (=1.0)
sE constant in k±E model (=1.3)

t shear stress

Subscripts
i, j summation
l local conditions

t turbulent
w conditions at the wall
Z variable stretched according to Z(E )
1 external ¯ow conditions
1 ®rst grid point
1, 2 order of magnitude
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addition to the classical data on mean velocity and
temperature pro®les, and on some global parameters

such as the skin-friction coe�cient and the Stanton
number, the works are relatively rich in turbulence

data.

Despite all the achievements, some results still
remain to be found. The analytical treatment of prob-

lems that combine compressibility e�ects, transfer of
heat and transpiration, for instance, is extremely com-

plex, having only recently been carried out [2].
Likewise, the study of the topology of a turbulent

boundary layer with and without wall suction has

recently been carried out by Antonia et al. [3]. The
same authors were also involved in investigations on

the e�ect of wall suction on bursting in a turbulent
boundary layer [4] and on normalization for a turbu-

lent boundary layer with wall transpiration [5].

A serious di�culty which always confronts all
approaches, theoretical or experimental, is the correct

description of ¯ows subjected to very high injection
rates. The uncertainty involved in the calculation of

the skin-friction coe�cient is a classical example. For
instance, Kendall [6] have shown how sensitive to

some ¯ow parameters Cf is when obtained from any
form of the momentum equation. They showed that

for a transpiration rate of 0.005 at Rx=106, an uncer-
tainty of 21% in the knowledge of both the momen-

tum thickness variation with the distance from the

leading edge and of the transpiration rate yields an
uncertainty of 232% in Cf . For transpiration rates of

the order of 0.008 the boundary layer is said to be in a
near `blown-o�' state yielding ¯ow characteristics very

di�cult to measure and to reproduce theoretically.

The purpose of the present work is to develop a the-
ory capable of successfully dealing with very high

injection rates while thus presenting a large degree of
generality. For that matter, we will choose as our tur-

bulence closure model the k±E model. The present
approach will resort to asymptotic techniques so as to

®nd closed explicit analytical solutions for the ¯ow vel-
ocity, u, turbulent kinetic energy, k, and energy dissi-

pation rate per unit mass, E, in the near wall fully

turbulent region. These analytical solutions o�er a con-
venient set of boundary conditions for a numerical

computation of the ¯ow ®eld that avoids the complex-
ities of the sublayer region. In this case, the outer

region numerical solution is matched to the analytical
solutions rather than to the conditions at the wall

itself.

For ¯ows where the near wall processes are too
complex for the speci®cation of analytical local equi-

librium boundary conditions the remedy is to extend
any speci®c turbulence model to the wall so that the

viscous e�ects can be correctly captured. The di�erent
modelling strategies can, therefore, be grouped into

those that strive at ®nding re®ned analytical solutions
for the near wall solution and those that discard them

in favour of a sophisticated modelling of the turbulent

di�usivities across the near wall viscous sublayer.
An advantage of the low Reynolds number k±E

models is that, in principle, they do not need any
special treatment to deal with transpiration.

Unfortunately, the predictions with such models pro-

vide too large values for the friction coe�cient [7].
Another approach that dispenses a particular treat-

ment of the wall conditions is the second moment clo-
sure of Launder and Shima [8]. This model is

supposed to have a large degree of generality, being

capable of accounting for non-equilibrium e�ects.
Four cases of transpired ¯ows are illustrated in

Launder and Shima [8]. The agreement in the predicted
values of Cf is very good for the test case with zero

pressure gradient and moderate injection rates, whereas
for the adverse pressure gradient case the agreement is

poor.

The approaches that resort to a near wall analytical
treatment of the solution normally consider the vel-

ocity pro®le to be given close to the wall by universal
logarithmic laws. In this case, the turbulent kinetic

energy is made directly proportional to the square of
the local friction velocity and the dissipation rate

directly proportional to the cube of the local friction
velocity and inversely proportional to the distance

from the wall. For transpired ¯ows, these approxi-

mations are reasonable provided the transportation
rate is small and the changes in the friction velocity

are not signi®cant. For high injection rates, modi®-
cations in the classical formulation must be made so as

to correctly capture the strong explicit dependence of
the wall region ¯ow solution on the injection or suc-

tion velocity. In fact, as we shall see later, for high
injection rates the dominance of the term which ex-

plicitly depends on the injection velocity on the ¯ow

solution is complete.
Perturbation techniques, which include some scaling

arguments and hypotheses about the appropriate
nature of asymptotic expansions for u, k and E, are

used to ®nd local approximated equations, that are
then analytically solved. Important results found here

are the second-order solutions which show that, if

appropriate similarity parameters are used, the turbu-
lent kinetic energy has a (log y ) behaviour whereas the

Superscripts
' turbulent ¯uctuation
k kth iteration
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dissipation rate has a (log y )/y behaviour. The theory,
as presented, is self-consistent, which means that all

derived ¯ow constants can be directly determined from
the standard k±E constants. The obtained results can
then be used to generate computed data for velocity

pro®les and skin-friction which can be compared with
the experimental data of Andersen et al. [9]. An inde-
pendent check on the theory can be made through a

direct comparison of the high-order solutions with the
turbulence data. The agreement shown by the theory is
remarkable.

2. The equations of motion

We will now present the governing equations of the
standard k±E formulation. Following the regular pro-

cedure, we denote the mean parts of the velocity and
pressure ®elds by ui and p, respectively. The ¯uctuation
of the turbulent quantities is denoted by the dashes.

Then, the equations of motion for incompressible
¯ows can be cast as

@ui
@x i
� 0 �1�

@ui
@ t
� uj

@ui
@x j
� ÿ1

r
@p

@x i
� @tij
@x j
� @

@x j
�ndij �: �2�

Here, r is the density of the ¯uid. The Reynolds stress,
tij, is

tij � ÿhu 0iu 0ji �3�

where the Dirac brackets denote time averaging. A

summation is understood for repeated subscripts.
The standard k±E model relates the components of

the Reynolds stress tensor to the mean ¯ow gradients
with the aid of the eddy viscosity concept

tij � ÿ2
3
kdij � ntdij: �4�

Here, dij is the Kronecker delta; k, the turbulent kin-

etic energy, is given by

k � hu
0
iu
0
ii

2
�5�

nt is the eddy viscosity, n the kinematic viscosity of the
¯uid and dij the velocity strain

dij � @ui
@x j
� @uj
@x i

: �6�

The dissipation rate of turbulent kinetic energy, E, is
given by

E � n
�
@u 0 i
@x j

@u 0 i
@x j

�
: �7�

In the k±E model, dimensional arguments are invoked
to give

nt � cn
k2

E
�8�

where cn is a model constant.
The turbulence parameters, k and E, are determined

through the following transport equations

Dk
Dt
� Pÿ E� @

@x i

�
nt

sk

@k
@xi

�
�9�

DE
Dt
� @

@x i

�
nt

sE

@E
@x i

�
� cE1

E
k
Pÿ cE2

E2

k
�10�

P � nt

@ui
@x i

�
@ui
@xj
� @uj
@x i

�
�11�

where all the cs and ss are model constants. Typical
values of the empirical constants are shown in Table 1.
Clearly, the system of Eqs. (1)±(11) constitutes a

closed system. The complete de®nition of the math-
ematical problem depends now only on the appropriate
speci®cation of the boundary conditions. At the wall,
this is normally made with the help of wall functions.

For the streamwise velocity component, u, for k and
for E we normally write

u1
ut
� 1

k
ln �E1y

�
1 �, y�1 �

y1ut
n

�12�

k � u2t����
cn
p �13�

E � u3t
ky1

�14�

where u1 and y1 should be evaluated in the fully turbu-
lent region of the ¯ow, k is the von Karman constant
(=0.41), E1 is the linear coe�cient of the law of the

wall (=9) and ut is the friction velocity. The above
equations are derived upon the assumption of a local
equilibrium condition and are valid for solid surface

Table 1

Model constants

cn cE1 cE2 sk sE

0.09 1.44 1.92 1.0 1.30
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¯ows. In the next section we will extend these ex-
pressions to our case of interest.

3. Asymptotic analysis

Since the wall function formulation is supposed to

hold in the fully turbulent region, we will solve the
equations of motion, Eqs. (1)±(11), in a speci®c region
of the ¯ow.

Under this condition, the original equations of
motion may undergo a series of simpli®cations.
Depending on the local scales of the ¯ow, asymptotic
arguments can be evoked to evaluate the relative order

of magnitude of the various terms in the motion
equation. Further arguments show how terms which
are supposed to locally dominate the solution can be

selected to yield approximate equations with, prefer-
ably, analytical solutions. If the approximated
equations are adequately chosen, one may then be

capable of constructing a solution which is uniformly
valid in the whole interval domain through successive
matching of adjacent solutions.
The above ideas, very familiar to perturbation

method users, can be given di�erent degrees of math-
ematical formalism. For simple problems, simple rules
and recipes can be devised to ®nd solutions that can

be matched in an appropriate overlap domain. For
most of these simple rules the concept of overlap does
not appear explicitly. However, matching is, by its

nature, a comparison of two approximations in their
domain of overlap.
To overcome the di�culties associated with the

matching process, Kaplun [10] developed a theory
based entirely on some formal properties of equations
which aimed at characterizing them through their
domains of validity. The theory naturally leads to a

more fundamental understanding of the matching
process and of the construction of the asymptotic
expansions. The formal properties are established

through passage of a limit process, the Z-limit. Then,
the concepts of formal domain, of intermediate
equation, of principal equation and of formal domain

of validity can be introduced. The operational details
of the mathematical procedure are laid by ®ve de®-
nitions, one Axiom and one Ansatz. Because of the
heuristic nature of the Axiom and of the Ansatz, all

results obtained through Kaplun's theory have to be
experimentally validated. The absolute originality of
the theory, however, always makes its application

worthwhile.
An application of Kaplun's theory to the turbulent

boundary layer was made by Cruz and Silva Freire

[11]. The paper studied the asymptotic structure of
both the velocity and the temperature turbulent
boundary layers for attached and separating ¯ows. An

interesting result was the determination of two princi-
pal equations at points ord Z=ord u 2

t and ord Z=ord

(1/utR ) of the formal validity domain. This result
throws new light onto the asymptotic structure derived
by Sychev and Sychev [12], giving a di�erent interpret-

ation to all three relevant length scales found there. In
fact, what is said by the result is that it su�ces to have
two sets of approximate equations to cover the whole

domain. Furthermore, these two sets are shown to
overlap in an appropriate domain.
We will not repeat here the details of the analysis of

Cruz and Silva Freire [11] which can be obtained
directly from the original source. We just point out
that all results were derived without appealing to any
particular closure model; only asymptotic arguments

were used. On this note, it must be said that the
asymptotic structure remains the same as the con-
sidered k±E model. In fact, if the k and E equations are
considered in the analysis of Cruz and Silva Freire
[11], it can be shown that the overlap domain de®ned
by set (15) below remains unaltered.

The region where the turbulent e�ects dominate is
de®ned by the domain

D � fZ=ord �1=utR�<ord �Z�<ord �u2t�g �15�

where Z denotes the region of validity of the approxi-
mated equations, and R denotes the Reynolds number.

For more details concerning the nature of the stretch-
ing function Z, we refer the reader to Kaplun [10],
Cruz and Silva Freire [11], Meyer [13] or Silva Freire

and Hirata [14].
The fully turbulent region, determined by Eq. (15),

must be interpreted as the overlap domain of the two

principal equations. Another result is that the presence
of transpiration does not alter in any way domain (15).
That means we should work with approximate
equations that hold in that domain.

Passing the Z-limit [11] with ord (Z )=ord (u 2
t) into

Eqs. (2)±(11), we get

vw

@u

@y
� @

@y

"
cn
k2

E
@u

@y

#
�16�

vw
@k
@y
� nt

�
@u

@y

�2

ÿE� @

@y

�
nt

sk

@k
@y

�
�17�

vw
@ E
@y
� cE

E
k

nt

�
@u

@y

�2

ÿcE E
2

k
� @

@y

�
nt

sE

@ E
@y

�
: �18�

These are the intermediate equations, in the sense of

Kaplun, that hold in the fully turbulent region. The
wall functions for u, k and E will be constructed on
their basis.
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To ®nd a solution to Eqs. (16)±(18), we consider the
¯ow quantities to be given by the following asymptotic

expansions

u � utu1 � vwu2 �19�

k � u2tk1 � utvwk2 � v2wk3 �20�

E � u3tE1 � u2tvwE2 � utv
2
wE3: �21�

The ®rst- and second-order of approximate equations
can be found if we substitute Eqs. (19)±(21) into Eqs.
(16)±(18) and collect the terms of the same order. The

results are:

(a) ®rst-order equations

0 � @

@y

"
cn
k21
E1

@u1
@y

#
�22�

0 � cn
k21
E1

�
@u1
@y

�2

ÿE1 � @

@y

"
cn

sK

k21
E1

@k1
@y

#
�23�

0 � cE1cnk1

�
@u1
@y

�2

ÿcE2 E
2
1

k1
� @

@y

"
cn

sE

k21
E1

@E1
@y

#
�24�

(b) second-order equations

@u1
@y
� @

@y

" 
cn
k21
E1

@u2
@y

� 1

E1

�
2k1k2 ÿ E2

E1
k21

�
@u1
@y

!# �25�

@k1
@y
� 2cn

k21
E1

@u1
@y

@u2
@y

� cn

E1

�
2k1k2 ÿ E2

E1
k21

��
@u1
@y

�2

ÿE2

� cn

sK

@

@y

" 
k21
E1

@k2
@y

� 1

E1

�
2k1k2 ÿ E2

E1
k21

�
@k1
@y

!#
�26�

@E1
@y
� cncE1

 
2k1

@u1
@y

@u2
@y

�
�
2k2 ÿ E2

E1
k1
��

@u1
@y

�2
!

ÿ cE2
1

k1

�
2E1E2 ÿ k2

k1
E21

�

� cn

sE

@

@y

" 
k21
E1

@E2
@y

� 1

E1

�
2k1k2 ÿ E2

E1
k21

�
@ E1
@y

!#
:

�27�

The solution of the above equations is:

(a) ®rst-order solution

u1 � 1

k
� ln y� � A0� �28�

k1 � A �29�

E1 � B

ky
�30�

(b) second-order solution

u2 � 1

4k2
� ln y� � A0�2 �31�

k2 � C ln y� �D �32�

E2 � E
ln y�

y
� F

y
�33�

where y+=yut/n, k is the von Karman constant and
A0 is a parameter that was shown to vary with the
transpiration rate [17].

The constants A, B, C, D, E and F are given by

A � 1����
cn
p � 3:3 �34�

B � 1 �35�

C � 1

k
����
cn
p � 8:1 �36�
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D � 1

k
����
cn
p

�
17

2
ÿ sE

�
� 58:3 �37�

E � 3

k2
� 17:9 �38�

F � 49ÿ 2sE
4k2

� 69:6: �39�

Please note that the values of these constants were
determined exactly from the standard k±E model con-
stants, which, in principle, cannot be said to be the

best for the present class of problem. Thus, proper
values for A, B, C, D, E and F should, necessarily, be
determined by comparison with the experimental data.

In the next two sections we will proceed to the exper-
imental validation of Eqs. (20) and (21). This will be
made in two ways. Firstly, we will verify if the exper-

imental data conform to log-law expressions for k and
E such as those given by Eqs. (20) and (21). Secondly,
a numerical implementation of these equations will be

made for the prediction of velocity pro®les and the
skin-friction coe�cient.
The velocity solution given by Eqs. (19), (28) and

(31) dispenses any kind of validation test since it con-

sists of a well-known result. This equation has been
thoroughly tested over the last thirty years, being of
undisputed validity today. It can be arrived at by

either dimensional arguments or mathematical deduc-
tions that use simple algebraic turbulence models
[15,16].

The velocity solution is given by

u � ut
k
� ln y� � A0� � vw

4k2
� ln y� � A0�2 �40�

where A0 was shown by Silva Freire [17] to vary with

the transpiration rate according to

A0 � k

�
5:0ÿ 512

vw

U1

�
: �41�

An extension of Eq. (40) for the outer part of the ¯ow

can readily be obtained if an appropriate wake func-
tion is added to it. This wake function is also shown
to depend on the transpiration rate [17]. The resulting
skin-friction equation is much less sensitive than other

formulations to small variations in the ¯ow par-
ameters, providing very reliable results.
For compressible transpired boundary layer ¯ows,

the law of the wall is cast in the form of an elliptic
integral [18], which makes it di�cult to be handled
algebraically. However, Silva Freire [19] has shown

that a direct application of a van Driest transform-
ation to Eqs. (40) and (41) provides very good results
in the prediction of ¯ow velocity and skin-friction.

4. Experimental and numerical validation

From a full consideration of more than 200 bound-
ary layer developments with transpiration, Square [20]

recommends as a basic test case the ¯ows measured by
Andersen et al. [9]. These data are, according to the
former author, the only ones available in literature

where redundant measurements of the skin-friction
coe�cient were made and for this reason are relatively

free of error. Andersen et al. [9] proposed to determine
the wall shear stress by measuring the shear stress
away from the wall and use the integrated boundary

layer equations to extrapolate the results to the wall.
This new technique was supposed to give `indepen-
dence' to the data.

The principal objective of the work of Andersen et
al. [9] was to provide measurements for transpired

boundary layers in adverse pressure gradients. A sec-
ondary motivation was to repeat some of Simpson et
al.'s [21] constant pressure ¯ow since, during some ex-

ploratory tests, it had been found that the mean vel-
ocity data of Simpson et al. [21] obtained through

¯attened Pitot tubes di�ered appreciably from pro®les
obtained through hot-wire anemometry. Thus, because
the measurements for zero pressure gradient boundary

layers were taken at an early age and through Pitot
tubes, no data on turbulent quantities were presented.
This fact seriously compromises the experimental

assessment of constants C, D, E and F. After the initial
tests of Simpson et al. [21], the authors that followed

concentrated on more complex ¯ow geometries, leaving
the zero pressure gradient results as they were.
In Andersen et al.'s report, twenty runs are listed.

After a speci®c section where a run summary of some
relevant parameters is presented, the pro®le tables con-

taining a detailed list of the ¯ow conditions including
boundary conditions, skin-friction coe�cients and inte-
gral parameters follow. It is important to note that no

turbulent quantity is given in tabulated form; they are
presented in graphical form in the main body of the
work. In particular, no turbulent quantity is presented

for ¯ows without external adverse pressure gradient.
For this reason, only three runs could be considered

for validation of the data on turbulent quantities;
those whose ¯ows were subjected to a constant injec-
tion rate and to a low adverse pressure gradient. To all

the other runs the ¯ows were either subjected to a dis-
tributed injection rate, or to a very strong adverse

pressure gradient. Thus, strictly speaking, none of the
¯ow conditions of Andersen et al. apply for consider-
ation here. However, since the present authors were

not capable of locating any other source of data which
could be of use, they have decided to consider for vali-
dation of the theory the three experimental runs which

most approached the recognized theoretical conditions.
The general experimental conditions are shown in
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Table 2, where F stands for injection rate, m is the ex-
ponential coe�cient in the adverse pressure gradient

term, (UAxm).
To verify the logarithmic form of k, we re-write Eq.

(19) as

G � C ln y� �D �42�
where

G � kÿ u2tA

utvw

: �43�

The experimental results plotted as G against y+ are

shown in Fig. 1. The presence of a logarithmic region
is clearly illustrated, thus con®rming the form obtained
for Eq. (42). In fact, the injection data seem to indicate
that parameters C and D are presumably constant

since the two curves collapse nicely. The suction
results, on the other hand, give completely di�erent
values for parameters C and D.

In truth, even casual observation of the experimental
data shows that expressions (13) and (14) cannot pro-
vide a good description for the boundary conditions.

The di�culty here is that k is seen to increase with an
increase in injection rate whereas ut is seen to decrease.

When section is applied to the ¯ow, the inverse beha-
viour is observed; an increase in suction decreases k
and increases ut. The conclusion is that Eq. (13) can-

not reconcile this experimental fact. The higher-order
correction term is, therefore, crucial for a good rep-
resentation of the ¯ow ®eld.

Following the mean velocity trend, we must expect
C and D to vary with the injection rate and, indeed,
even the small quantity of data gathered here appears

to indicate this. Any de®nitive functional expression
for their behaviour should, however, only be advanced
as further data on k becomes available in the litera-
ture.

Since E is not a directly measurable quantity, its ex-
perimental assessment is di�cult to be made.
Nevertheless, its behaviour can be indirectly studied

through equation

E � CD
k3=2

lc
�44�

where the constant CD is a model constant.

This procedure is always uncertain, making it di�-
cult to draw any ®rm conclusion about the values of
the constants E and F; however, it should disclose any

logarithmic behaviour of E.
The E pro®le will be represented in the similarity

variables x and y+, de®ned as

X � k�E ln y� � F � �45�

where

X � E�ky� ÿ u3tB

u2tvw

: �46�

The experimental results plotted as x against y+ are
shown in Fig. 2.

It is no surprise that the assessed experimental
values are di�erent from the theoretical ones since, as
earlier explained, the experimental ¯ow conditions do

not exactly reproduce the theoretical conditions.
However, it is clear from Figs. 1 and 2 that both k
and E do present a logarithmic behaviour in a certain
region of the ¯ow. As mentioned before the theoretical

values were evaluated according to the classical k±E
model constants and these, in principle, are not sup-
posed to hold for transpired ¯ows.

Since Simpson et al. [21] applied suction from the
leading edge of the test surface, their boundary layer
was very thin closely approximating the asymptotic

state. Under this condition, much of the velocity ¯uc-
tuations are removed, resulting in a boundary layer
which is in a near state of relaminarization. For this

Table 2

Experimental ¯ow conditions

Run U [ft/s] F m

102171-1 21.33 0.004 ÿ0.15
101371-2 21.32 0.002 ÿ0.15
121671-3 21.29 ÿ0.002 ÿ0.15

Fig. 1. The behaviour of G according to the data of Andersen

et al. [9].
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reason, some of the results for the suction data di�er
appreciably from the blowing data.
To proceed to an independent assessment of the the-

ory, Eqs. (19)±(21) will be implemented in a numerical
representation of the ¯ow ®eld. Then, the calculated
velocity and skin-friction pro®les will be compared
with the experimental data of Andersen [9] for ¯ows

subjected to zero pressure gradients. We point out that
the implemented numerical values of the constants A
to F will be the theoretical values provided by Eqs.

(34)±(39).
The numerical results were generated through an es-

pecially constructed computer code. Using the bound-

ary layer approximations, the motion equations were
disceretized by way of a fully implicit ®nite di�erence
scheme [22] on a non-uniformly spaced grid in the

transversal direction. The ®nite di�erence discretization
results in a system of 4N couple non-linear algebraic
equations, which had to be solved at each streamwise
station in a space-marching procedure for parabolic

partial di�erential equations.
The di�erence equations were iterated according to

Ak�uk�1 ÿ uk� � ÿrk �47�

where matrix Ak is the linearized equation matrix
(LEM) formed from values determined in the kth non-
linear iteration, the vector uk represents the variables

of the system of linear algebraic equations, and rk is
the residue of the equations at the kth iteration. For
the applied ®nite di�erence method, the LEM has a

block tri-diagonal structure, where the elements of the
block matrices are determined by a modi®ed Newton
method. A simpli®ed Jacobian was used to form the

iteration matrix by keeping constant some of the coe�-
cients. The inversion of each 4� 4 element matrix was

made by a LU decomposition method. The simul-
taneously coupled solution of all equations signi®-
cantly improves the robustness and e�ciency of the

numerical scheme for ¯ow conditions at high Reynolds
numbers.
An adaptive algebraic grid generator was used to

redistribute the grid points at each position after a pre-
liminary solution had been obtained. Basically, a geo-
metric progression extending from the nearest to the

wall grid point to the most external grid point was im-
plemented.
The point where the wall boundary conditions were

implemented was chosen according to domain (15).

For most ¯ows of interest this can be translated into

D � f y�=11<y�<110g: �48�

Here we have taken y+=yut/n=40. The upper grid
limit was taken as 3d.
The streamwise stepsize was made a fraction of the

local boundary layer momentum thickness. A system-
atic study of the in¯uence of the computational par-
ameters on the solution has been carried out by one of

the present authors [23] and is reported elsewhere.
The numerical predictions were compared with the

experiments shown in Table 3. These runs cover a

large range of injection rates and, unlike those of
Table 2, are for ¯ows with zero external pressure gra-
dients.
Figs. 3±6 show the numerical predictions for the

skin-friction coe�cient as compared with the exper-
imental data of Andersen et al. [9] and the standard k±
E model formulation. As can be seen, the performance

of the present formulation is remarkable even for the
highest transpiration rate (=0.008). The standard
model always overpredicted the skin-friction coef-

®cient, even for the higher values of the local Reynolds
number based on the momentum thickness. This fact
has also been observed by Rodi and Schreurer [24],

who argue that the standard model predicts an
increase of the near wall slope of the length scale with
blowing, whereas the experiments do not show such a
dependence. For F=0.008 the standard model did not

converge. For low Reynolds numbers, the predictions

Fig. 2. The behaviour of x according to the data of Andersen

et al. [9].

Table 3

Experimental ¯ow conditions

Run U [ft/s] F m

100571-1 31.17 0.001 0.0

090171-2 31.38 0.002 0.0

090871-2 31.40 0.00375 0.0

092271-5 31.51 0.008 0.0
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departed from the experimental data in view of the

uncertainties related to the speci®cation of the initial

conditions for k and for E. Indeed, as said before, no

data for k were presented in Andersen et al. [9] for the

zero pressure gradient ¯ow cases. The present authors

were then forced to specify an arbitrary and uniform

value of k/U 2
1 (=0.01) as an initial condition. The

result was that only as the ¯ow had progressed some

distance downstream the numerical results started to

approach the experimental data asymptotically.

A typical velocity pro®le is shown in Fig. 7. the

good agreement of the presently proposed theory can,

again, by fully appreciated here. The almost exact

reproduction of the experimental data by the new for-

mulation is, indeed, very impressiveÐthe law of the
wall and the law of the wake are accurately predicted.

5. Final remarks

Since the standard k±E model does not apply to
¯ows or ¯ow regions where the local Reynolds number
is small, it cannot be applied to the viscous near wall

region. A popular approach to computing turbulent
¯ow has been to bridge this region by universal wall
functions. The present work aimed at ®nding a high-

order solution for u, k and E that have an explicit
dependence on the transpiration rate and can be used

Fig. 3. Skin-friction coe�cient prediction, F=0.001.

Fig. 4. Skin-friction coe�cient prediction, F=0.002.

Fig. 5. Skin-friction coe�cient prediction, F=0.00375.

Fig. 6. Skin-friction coe�cient prediction, F=0.008.
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as wall functions. These new solutions should greatly
improve the performance of the k±E model for tran-

spired ¯ows, in particular for ¯ows with strong tran-
spiration rates.
Keeping that in mind, a consistent asymptotic sol-

ution for the k±E model for incompressible transpired

turbulent boundary layers was developed. The solution
unveils, for the ®rst time, the logarithmic behaviour of
k and of E in the fully turbulent region of the ¯ow. A

numerical implementation of the new expressions
shows that they conform well to the experimental data,
giving good predictions for the velocity pro®le and the

skin-friction equation.
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